小白问:用paddlehub 的openpose_body_estimation得到数据后,下一步如何做可以判断到一个图片里的人有没有类似举手、低头的行为呢?
import paddlehub as hub #image_test = "test1.jpg" image_test = "test2.jpg" model = hub.Module(name='openpose_body_estimation') result = model.predict(image_test,visualization=True) mylog = open('recode.log', mode = 'a',encoding='utf-8') print(result, file=mylog) mylog.close()
处理的图片结果图片:
记录的返回信息:
{'candidate': array([[2.56000000e+02, 5.50000000e+01, 9.26660120e-01, 0.00000000e+00], [1.37000000e+02, 5.80000000e+01, 9.97184694e-01, 1.00000000e+00], [4.09000000e+02, 6.30000000e+01, 9.93659139e-01, 2.00000000e+00], [2.49000000e+02, 1.07000000e+02, 9.61833715e-01, 3.00000000e+00], [1.22000000e+02, 1.10000000e+02, 9.54079151e-01, 4.00000000e+00], [4.15000000e+02, 1.16000000e+02, 9.18871701e-01, 5.00000000e+00], [8.00000000e+01, 1.07000000e+02, 8.92051935e-01, 6.00000000e+00], [2.01000000e+02, 1.10000000e+02, 8.85539711e-01, 7.00000000e+00], [3.77000000e+02, 1.20000000e+02, 9.49104965e-01, 8.00000000e+00], [6.40000000e+01, 1.84000000e+02, 9.53616440e-01, 9.00000000e+00], [3.76000000e+02, 1.87000000e+02, 8.54201436e-01, 1.00000000e+01], [1.80000000e+02, 1.88000000e+02, 9.29694414e-01, 1.10000000e+01], [3.81000000e+02, 2.03000000e+02, 8.28347564e-01, 1.20000000e+01], [2.14000000e+02, 2.04000000e+02, 8.52818012e-01, 1.30000000e+01], [1.06000000e+02, 2.06000000e+02, 4.58440721e-01, 1.40000000e+01], [2.95000000e+02, 1.04000000e+02, 9.23401177e-01, 1.50000000e+01], [4.54000000e+02, 1.11000000e+02, 8.89868736e-01, 1.60000000e+01], [1.65000000e+02, 1.15000000e+02, 8.67759407e-01, 1.70000000e+01], [3.22000000e+02, 1.70000000e+02, 9.11746562e-01, 1.80000000e+01], [1.64000000e+02, 1.84000000e+02, 6.69153214e-01, 1.90000000e+01], [4.60000000e+02, 1.88000000e+02, 8.61127496e-01, 2.00000000e+01], [1.49000000e+02, 1.89000000e+02, 6.78965807e-01, 2.10000000e+01], [3.07000000e+02, 2.08000000e+02, 8.75384748e-01, 2.20000000e+01], [4.33000000e+02, 2.25000000e+02, 8.05526435e-01, 2.30000000e+01], [8.10000000e+01, 2.20000000e+02, 7.37039268e-01, 2.40000000e+01], [3.95000000e+02, 2.25000000e+02, 7.32784748e-01, 2.50000000e+01], [2.35000000e+02, 2.30000000e+02, 7.25677431e-01, 2.60000000e+01], [1.12000000e+02, 2.21000000e+02, 8.85800719e-01, 2.70000000e+01], [2.01000000e+02, 2.23000000e+02, 9.09173369e-01, 2.80000000e+01], [3.74000000e+02, 2.42000000e+02, 7.71196306e-01, 2.90000000e+01], [9.70000000e+01, 3.29000000e+02, 6.43031716e-01, 3.00000000e+01], [2.44000000e+02, 3.29000000e+02, 6.26661301e-01, 3.10000000e+01], [3.77000000e+02, 3.29000000e+02, 1.36328757e-01, 3.20000000e+01], [1.37000000e+02, 2.19000000e+02, 6.17978990e-01, 3.30000000e+01], [2.90000000e+02, 2.24000000e+02, 7.25328445e-01, 3.40000000e+01], [4.44000000e+02, 2.27000000e+02, 7.78226972e-01, 3.50000000e+01], [3.38000000e+02, 2.21000000e+02, 9.42319214e-01, 3.60000000e+01], [1.52000000e+02, 2.23000000e+02, 8.77975941e-01, 3.70000000e+01], [4.07000000e+02, 2.67000000e+02, 9.35000598e-01, 3.80000000e+01], [1.57000000e+02, 3.29000000e+02, 7.72364140e-01, 3.90000000e+01], [3.07000000e+02, 3.29000000e+02, 4.35196221e-01, 4.00000000e+01], [4.25000000e+02, 3.29000000e+02, 1.65057734e-01, 4.10000000e+01], [2.48000000e+02, 4.60000000e+01, 9.59142804e-01, 4.20000000e+01], [1.30000000e+02, 4.80000000e+01, 9.49559450e-01, 4.30000000e+01], [4.01000000e+02, 5.50000000e+01, 9.16016042e-01, 4.40000000e+01], [2.65000000e+02, 4.80000000e+01, 9.81730044e-01, 4.50000000e+01], [1.47000000e+02, 5.10000000e+01, 9.93008912e-01, 4.60000000e+01], [4.19000000e+02, 5.50000000e+01, 9.18187320e-01, 4.70000000e+01], [2.28000000e+02, 4.70000000e+01, 9.46349442e-01, 4.80000000e+01], [1.14000000e+02, 5.00000000e+01, 8.41706038e-01, 4.90000000e+01], [3.91000000e+02, 6.10000000e+01, 9.13940072e-01, 5.00000000e+01], [2.73000000e+02, 5.00000000e+01, 3.11306089e-01, 5.10000000e+01], [1.55000000e+02, 5.90000000e+01, 6.00095391e-01, 5.20000000e+01], [4.30000000e+02, 6.10000000e+01, 8.75765264e-01, 5.30000000e+01]]), 'subset': array([[ 1. , 4. , 6. , 9. , 14. , 17. , 19. , 21. , 24. , 27. , 30. , 33. , 37. , 39. , 43. , 46. , 49. , 52. , 30.03926984, 18. ], [ 0. , 3. , 7. , 11. , 13. , 15. , 18. , 22. , 26. , 28. , 31. , 34. , 36. , 40. , 42. , 45. , 48. , 51. , 30.76957117, 18. ], [ 2. , 5. , 8. , 10. , 12. , 16. , 20. , 23. , 25. , 29. , 32. , 35. , 38. , 41. , 44. , 47. , 50. , 53. , 30.85516463, 18. ]]), 'data': array([[[ 37, 51, 33], [ 35, 49, 31], [ 32, 48, 30], ..., [ 16, 48, 24], [ 16, 48, 24], [ 15, 47, 23]], [[ 33, 47, 29], [ 32, 46, 28], [ 30, 46, 28], ..., [ 17, 49, 25], [ 17, 49, 25], [ 16, 48, 24]], [[ 26, 40, 22], [ 27, 41, 23], [ 26, 42, 24], ..., [ 19, 51, 27], [ 18, 50, 26], [ 18, 50, 26]], ..., [[ 34, 33, 23], [ 59, 39, 28], [ 76, 56, 39], ..., [151, 66, 234], [166, 85, 242], [175, 103, 247]], [[ 31, 37, 20], [ 56, 39, 20], [ 90, 66, 38], ..., [174, 95, 246], [166, 87, 238], [162, 83, 234]], [[ 38, 44, 27], [ 61, 44, 25], [ 93, 69, 41], ..., [174, 95, 246], [167, 88, 239], [162, 83, 234]]], dtype=uint8)} {'candidate': array([[ 90. , 38. , 0.87060368, 0. ], [102. , 65. , 0.77316552, 1. ], [ 70. , 67. , 0.71633345, 2. ], [ 26. , 87. , 0.79980302, 3. ], [ 44. , 45. , 0.77932775, 4. ], [135. , 62. , 0.65731257, 5. ], [178. , 94. , 0.80417168, 6. ], [162. , 48. , 0.7487663 , 7. ], [ 82. , 32. , 0.88247955, 8. ], [ 96. , 30. , 0.95693362, 9. ], [ 75. , 38. , 0.76395959, 10. ], [109. , 32. , 0.89137608, 11. ]]), 'subset': array([[ 0. , 1. , 2. , 3. , 4. , 5. , 6. , 7. , -1. , -1. , -1. , -1. , -1. , -1. , 8. , 9. , 10. , 11. , 19.70410003, 12. ]]), 'data': array([[[255, 255, 255], [255, 255, 255], [255, 255, 255], ..., [209, 218, 205], [208, 217, 204], [207, 216, 203]], [[255, 255, 255], [255, 255, 255], [255, 255, 255], ..., [209, 218, 205], [208, 217, 204], [207, 216, 203]], [[255, 255, 255], [255, 255, 255], [255, 255, 255], ..., [209, 218, 205], [208, 217, 204], [207, 216, 203]], ..., [[240, 242, 236], [240, 242, 236], [240, 242, 236], ..., [190, 201, 181], [190, 201, 181], [189, 200, 180]], [[240, 242, 236], [240, 242, 236], [240, 242, 236], ..., [189, 200, 180], [189, 200, 180], [189, 200, 180]], [[241, 243, 237], [241, 243, 237], [241, 243, 237], ..., [188, 199, 179], [188, 199, 179], [188, 199, 179]]], dtype=uint8)}
ps:是不是需要找训练集打标签训练,用coco数据集可以吗,一时不知如何下手,Thanks♪(・ω・)ノ
收藏
点赞
0
个赞
请登录后评论
TOP
切换版块
同学,解决了吗,遇到了一样的问题
https://xasgkfp.diytrade.com/
http://xasgkfp.diytrade.com/
http://xakfp.simplesite.com/
http://cdfapiao.simplesite.com/
https://xasgkfp.diytrade.com
http://xasgkfp.diytrade.com