notebook直接运行可查看数据标注,和数据增广后图片的效果。
#查看数据增广augment test %cd /home/aistudio/work from insects_reader import get_insect_names, get_annotations from reader import get_img_data_from_file from image_utils import image_augment import matplotlib.patches as patches import matplotlib.pyplot as plt #print(get_insect_names()) #records = get_annotations(get_insect_names(), 'insects/train') records = get_annotations(get_insect_names(), 'insects/val') #print(records[0]) num = 100 img, gt_bbox, gt_labels, im_shape = get_img_data_from_file(records[num]) original_bbox_num = records[num]['gt_bbox'].shape[0] #print(original_bbox_num) #print(gt_bbox[0:10,:]) #img, gt_boxes, gt_labels = image_augment(img, gt_bbox, gt_labels, img.shape[0]) img, gt_boxes, gt_labels = image_augment(img, gt_bbox, gt_labels, 640) img = img.astype('int32') #print(gt_boxes[0:10,:]) plt.figure("Object Detection", figsize=(10, 10)) #for i in range(original_bbox_num): for i in range(50): #print(gt_boxes[i]) gt_boxes[i] = gt_boxes[i] * img.shape[0] #print(gt_boxes[i]) gt_boxes[i][0] = gt_boxes[i][0] - gt_boxes[i][2] * 0.5 gt_boxes[i][1] = gt_boxes[i][1] - gt_boxes[i][3] * 0.5 plt.gca().add_patch(plt.Rectangle(xy=(gt_boxes[i][0], gt_boxes[i][1]), width=gt_boxes[i][2], height=gt_boxes[i][3], edgecolor='b', fill=False, linewidth=1)) plt.imshow(img)
收藏
点赞
0
个赞
请登录后评论
TOP
切换版块