Jetson Nano Paddle Inference 推理mobilenet_ssd 出错
收藏
报错如下:
-----------------------------------------------------
环境:jetson nano(4G) jetpack 4.6 swap:8G
预测代码:
import numpy as np import argparse import cv2 from paddle.inference import Config from paddle.inference import create_predictor from paddle.inference import PrecisionType from img_preprocess import preprocess def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", type=str, default="", help= "Model dir, If you load a non-combined model, specify the directory of the model." ) parser.add_argument( "--model_file", type=str, default="", help="Model filename, Specify this when your model is a combined model." ) parser.add_argument( "--params_file", type=str, default="", help= "Parameter filename, Specify this when your model is a combined model." ) parser.add_argument("--img_path", type=str, default="", help="Input image path.") parser.add_argument("--threads", type=int, default=1, help="Whether use gpu.") return parser.parse_args() if __name__ == '__main__': args = parse_args() assert (args.model_dir != "") or \ (args.model_file != "" and args.params_file != ""), \ "Set model path error." assert args.img_path != "", "Set img_path error." # Init config if args.model_dir == "": config = Config(args.model_file, args.params_file) else: config = Config(args.model_dir) config.enable_use_gpu(0, 0) # 500 初始化显存大小 config.switch_ir_optim() config.enable_memory_optim() config.enable_tensorrt_engine(workspace_size=1 << 30, precision_mode=PrecisionType.Float32,max_batch_size=1, min_subgraph_size=5, use_static=False, use_calib_mode=False) # Create predictor predictor = create_predictor(config) # Set input img = cv2.imread(args.img_path) img = preprocess(img) input_names = predictor.get_input_names() input_tensor = predictor.get_input_handle(input_names[0]) input_tensor.reshape(img.shape) input_tensor.copy_from_cpu(img.copy()) # Run predictor.run() # Set output output_names = predictor.get_output_names() output_tensor = predictor.get_output_handle(output_names[0]) output_data = output_tensor.copy_to_cpu() print(output_data)
0
收藏
请登录后评论
哇嗷,可以提个issue进行询问哦~