请教 PaddleOCR对测试集预测并将图片排序输出txt文件--错误
收藏
修改后的infer_rec代码如下所示:
1、其中使用了
infer_list = get_image_file_list(infer_img)
infer_list.sort(key=lambda x: int(re.split('/home/aistudio/data/test_images/|.jpg',x)[1]))
对输测试集图片进行排序。
2、使用了
f = open('test2.txt',mode='w',encoding='utf8')
f.write('new_name\tvalue\n')
f.write('{}\t{}\n'.format(infer_list[i].replace('/home/aistudio/data/test_images/', ''),preds_text))
语句将输出写入txt文件。
但是输出结果得到的txt文件中,图片序号与预测文本不对应(虽然txt文件中按照图片序号进行了排序,但是图片序号和测试集中图片序号不一样),请问大佬们如何解决?
from __future__ import absolute_import from __future__ import division from __future__ import print_function from pyspark.sql.functions import split import os import re import sys project = 'PaddleOCR' # 工作项目根目录 sys.path.append(os.getcwd().split(project)[0] + project) import time import multiprocessing import numpy as np def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) from paddle import fluid # from ppocr.utils.utility import load_config, merge_config import program from paddle import fluid from ppocr.utils.utility import initial_logger logger = initial_logger() from ppocr.data.reader_main import reader_main from ppocr.utils.save_load import init_model from ppocr.utils.character import CharacterOps from ppocr.utils.utility import create_module from ppocr.utils.utility import get_image_file_list logger = initial_logger() def main(): config = program.load_config(FLAGS.config) program.merge_config(FLAGS.opt) logger.info(config) char_ops = CharacterOps(config['Global']) config['Global']['char_ops'] = char_ops # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] # check_gpu(use_gpu) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) rec_model = create_module(config['Architecture']['function'])(params=config) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): _, outputs = rec_model(mode="test") fetch_name_list = list(outputs.keys()) fetch_varname_list = [outputs[v].name for v in fetch_name_list] print(fetch_varname_list) eval_prog = eval_prog.clone(for_test=True) exe.run(startup_prog) init_model(config, eval_prog, exe) blobs = reader_main(config, 'test')() ### # print(blobs) infer_img = config['TestReader']['infer_img'] infer_list = get_image_file_list(infer_img) infer_list.sort(key=lambda x: int(re.split('/home/aistudio/data/test_images/|.jpg',x)[1])) ## print(infer_list) max_img_num = len(infer_list) if len(infer_list) == 0: logger.info("Can not find img in infer_img dir.") from tqdm import tqdm f = open('test2.txt',mode='w',encoding='utf8') ### f.write('new_name\tvalue\n') ### for i in tqdm( range(max_img_num)): # print("infer_img:",infer_list[i]) img = next(blobs) predict = exe.run(program=eval_prog, feed={"image": img},#img fetch_list=fetch_varname_list, return_numpy=False) preds = np.array(predict[0]) if preds.shape[1] == 1: preds = preds.reshape(-1) preds_lod = predict[0].lod()[0] preds_text = char_ops.decode(preds) else: end_pos = np.where(preds[0, :] == 1)[0] if len(end_pos) <= 1: preds_text = preds[0, 1:] else: preds_text = preds[0, 1:end_pos[1]] preds_text = preds_text.reshape(-1) preds_text = char_ops.decode(preds_text) f.write('{}\t{}\n'.format(infer_list[i].replace('/home/aistudio/data/test_images/', ''),preds_text)) ### # print("\t index:",preds) # print("\t word :",preds_text) f.close() # save for inference model # target_var = [] # for key, values in outputs.items(): # target_var.append(values) # fluid.io.save_inference_model( # "./output/", # feeded_var_names=['image'], # target_vars=target_var, # executor=exe, # main_program=eval_prog, # model_filename="model", # params_filename="params") if __name__ == '__main__': parser = program.ArgsParser() FLAGS = parser.parse_args() FLAGS.config = 'configs/rec/my_rec_ch_train.yml' main()
1
收藏
请登录后评论
还是没有很理解,图片顺序和读取以后的文字顺序不匹配对吧
可以看一下读取的时候处理的方式
ok,我再看看
最后还是用python搞了个txt排序小算法解决了