GPU环境怎么调用
收藏
请教一下各位大佬
已经安装好CUDA,cuDNN,paddlepaddle_gpu
用这行代码os.environ['CUDA_VISIBLE_DEVICES'] = '0'训练,但是打开任务管理器GPU0使用率是1%,CPU100%
""" 训练目标检测模型 """ import os # 选择使用0号卡 os.environ['CUDA_VISIBLE_DEVICES'] = '0' from paddlex.det import transforms import paddlex as pdx # 定义训练和验证时的transforms train_transforms = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.Normalize(), transforms.ResizeByShort(short_size=600, max_size=1333), transforms.Padding(coarsest_stride=32) ]) eval_transforms = transforms.Compose([ transforms.Normalize(), transforms.ResizeByShort(short_size=600, max_size=1333), transforms.Padding(coarsest_stride=32), ]) # 定义训练和验证所用的数据集 train_dataset = pdx.datasets.VOCDetection( data_dir='sample_det', file_list='sample_det/train_list.txt', label_list='sample_det/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.VOCDetection( data_dir='sample_det', file_list='sample_det/val_list.txt', label_list='sample_det/labels.txt', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标 # VisualDL启动方式: visualdl --logdir output/faster_rcnn_r50_fpn/vdl_log --port 8001 # 浏览器打开 https://0.0.0.0:8001即可 # 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP # num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1 num_classes = len(train_dataset.labels) + 1 model = pdx.det.FasterRCNN(num_classes=num_classes, backbone='ResNet50') model.train( num_epochs=50, train_dataset=train_dataset, train_batch_size=2, eval_dataset=eval_dataset, save_interval_epochs=20, learning_rate=0.0025, warmup_steps=500, warmup_start_lr=1.0/1200, lr_decay_epochs=[10, 20, 40], save_dir='output_det/faster_rcnn_r50_fpn', use_vdl=True )
咋调用GPU环境?
0
收藏
请登录后评论
不是 place = paddle.CUDAPlace(0) 吗?
不是 place = paddle.CUDAPlace(0) 吗?
怎么看的利用率?