首页 AI Studio教育版 帖子详情
百度飞桨图像分割7日打卡营第1次作业手撸代码
收藏
快速回复
AI Studio教育版 文章课程答疑 1221 5
百度飞桨图像分割7日打卡营第1次作业手撸代码
收藏
快速回复
AI Studio教育版 文章课程答疑 1221 5

这段时间参加了飞桨深度学习学院开设的“图像分割7日打卡营”,课程链接如下:

https://aistudio.baidu.com/aistudio/course/introduce/1767

在学习过程中,看着朱老师的视频写手撸了代码,在写代码过程中,遇到了一些问题,本文将第1次作业的代码拿来,介绍一下,在写代码过程中遇到的问题。

第1次作业有如下的3个任务:

1) basic_model.py

2) basic_dataloader.py

3) basic_trainsform.py

几个文件都是以填空的方式来实现的,老师已经写了基础的代码,要求每个人根据课程内容和老师的视频把剩下的todo部分以填空的方式写完整,并把代码跑起来:

  1.  basic_model.py 的代码如下:
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable  #TODO   将np数据转换成paddle中的tensor
from paddle.fluid.dygraph import Conv2D       #TODO
from paddle.fluid.dygraph import Pool2D       #TODO
import numpy as np
np.set_printoptions(precision=2)


class BasicModel(fluid.dygraph.Layer):
    # BasicModel contains:
    # 1. pool:   4x4 max pool op, with stride 4
    # 2. conv:   3x3 kernel size, takes RGB image as input and output num_classes channels,
    #            note that the feature map size should be the same
    # 3. upsample: upsample to input size
    #
    # TODOs:
    # 1. The model takes an random input tensor with shape (1, 3, 8, 8)
    # 2. The model outputs a tensor with same HxW size of the input, but C = num_classes
    # 3. Print out the model output in numpy format 

    def __init__(self, num_classes=59):
        super(BasicModel, self).__init__()
        #TODO
        self.pool = Pool2D(pool_size=2, pool_stride=2)
        #TODO
        self.conv = Conv2D(num_channels=3, num_filters=num_classes, filter_size=1)
    def forward(self, inputs):
        #TODO 
        x = self.pool(inputs)
        x = fluid.layers.interpolate(x, out_shape=inputs.shape[2::])   # 本句与下一句相同,写法较为简单

        # x = fluid.layers.interpolate(x, out_shape=(inputs.shape[2], inputs.shape[3]))
        #TODO 
        x = self.conv(x)

        return x

def main():
    place = paddle.fluid.CPUPlace()
    # place = paddle.fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
        model = BasicModel(num_classes=59)
        model.eval()   # model.train(),这里使用eval()只是简单的过一下,火炬为torch
        input_data = np.random.rand(1, 3, 8, 8).astype(np.float32)   # TODO
        print('Input data shape: ', input_data.shape)
        input_data = to_variable(input_data)    # TODO  将np数据转换成paddle的tensor
        output_data = model(input_data)         # TODO
        # print(output_data)
        output_data = output_data.numpy()     # TODO  将数据转换成np
        print('Output data shape: ', output_data.shape)

if __name__ == "__main__":
    main()

2. basic_dataloader.py 的代码

import os
import random
import numpy as np
import cv2
import paddle.fluid as fluid

# 新增的类的定义
class Transform(object):
    def __init__(self, size=256):
        self.size = size    
    def __call__(self, input, label):
        input = cv2.resize(input, (self.size, self.size), interpolation=cv2.INTER_LINEAR)  # interpolation 很关键,有效防越界出错
        label = cv2.resize(label, (self.size, self.size), interpolation=cv2.INTER_NEAREST)

        return input, label

class BasicDataLoader():
    def __init__(self,
                 image_folder,
                 image_list_file,
                 transform=None,
                 shuffle=True):
        self.image_folder = image_folder
        self.image_list_file = image_list_file
        self.transform = transform
        self.shuffle = shuffle

        self.data_list = self.read_list()

    # 老师习惯使用这四个方法,在自己实现时,也可以使用其它的方法
    def read_list(self):
        data_list = []
        with open(self.image_list_file) as infile:
            for line in infile:
                data_path = os.path.join(self.image_folder, line.split()[0])
                label_path = os.path.join(self.image_folder, line.split()[1])
                data_list.append((data_path, label_path))   # 转化成tupple

        random.shuffle(data_list)    # python 自带的shuffle
        return data_list

    def preprocess(self, data, label):
        h, w, c = data.shape
        h_gt, w_gt = label.shape
        assert h==h_gt, "Error"
        assert w==w_gt, "Error"

        if self.transform:
            data, label = self.transform(data, label)
        
        label = label[:, :, np.newaxis]

        return data, label

    def __len__(self):    # __方法为类中的方法, 这里python基础
        return len(self.data_list)

    def __call__(self):    # a=A(), a() 会调用这个就去
        for data_path, label_path in self.data_list:
            data = cv2.imread(data_path, cv2.IMREAD_COLOR)   # 带颜色读取
            data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)     # 通道转换
            label = cv2.imread(data_path, cv2.IMREAD_GRAYSCALE)   # 灰色图形
            print(data.shape, label.shape)
            data, label = self.preprocess(data, label)
            yield data, label      # 最关键的一行,将数据返回,比Return高级一些





def main():
    batch_size = 5
    place = fluid.CPUPlace()   # 使用CPU运行
    # place = fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
        transform = Transform(256)
        # TODO: create BasicDataloder instance
        # image_folder="./dummy_data"
        # image_list_file="./dummy_data/list.txt"
        basic_dataloader = BasicDataLoader(
                image_folder = './work/dummy_data',
                image_list_file = "./work/dummy_data/list.txt",
                transform=transform,
                shuffle=True
                )

        # 下面的两段代码能自动将代码转换成(5, 256, 256, 1)
        # TODO: craete fluid.io.DataLoader instance
        dataloader = fluid.io.DataLoader.from_generator(capacity=1, use_multiprocess=False)  #  paddle的dataloader

        # TODO: set sample generator for fluid dataloader
        # 自己的dataloader、   # batch_size、# 工作地点
        dataloader.set_sample_generator(basic_dataloader,
                                        batch_size = batch_size, 
                                        places=place) 


        num_epoch = 2
        for epoch in range(1, num_epoch+1):
            print(f'Epoch [{epoch}/{num_epoch}]:')
            for idx, (data, label) in enumerate(dataloader):
                print(f'Iter {idx}, Data shape: {data.shape}, Label shape: {label.shape}')

if __name__ == "__main__":
    main()

3. basic_transform.py 的代码

import cv2
import numpy as np


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, image, label=None):
        for t in self.transforms:
            image, label = t(image, label)
        return image, label


class Normalize(object):
    def __init__(self, mean_val, std_val, val_scale=1):
        # set val_scale = 1 if mean and std are in range (0,1)
        # set val_scale to other value, if mean and std are in range (0,255)
        self.mean = np.array(mean_val, dtype=np.float32)
        self.std = np.array(std_val, dtype=np.float32)
        self.val_scale = 1/255.0 if val_scale==1 else 1
    def __call__(self, image, label=None):
        image = image.astype(np.float32)
        image = image * self.val_scale
        image = image - self.mean
        image = image * (1 / self.std)
        return image, label


class ConvertDataType(object):
    def __call__(self, image, label=None):
        if label is not None:
            label = label.astype(np.int64)
        return image.astype(np.float32), label


class Pad(object):
    def __init__(self, size, ignore_label=255, mean_val=0, val_scale=1):
        # set val_scale to 1 if mean_val is in range (0, 1)
        # set val_scale to 255 if mean_val is in range (0, 255) 
        factor = 255 if val_scale == 1 else 1

        self.size = size
        self.ignore_label = ignore_label
        self.mean_val=mean_val
        # from 0-1 to 0-255
        if isinstance(self.mean_val, (tuple,list)):
            self.mean_val = [int(x* factor) for x in self.mean_val]
        else:
            self.mean_val = int(self.mean_val * factor)


    def __call__(self, image, label=None):
        h, w, c = image.shape
        pad_h = max(self.size - h, 0)
        pad_w = max(self.size - w, 0)

        pad_h_half = int(pad_h / 2)
        pad_w_half = int(pad_w / 2)

        if pad_h > 0 or pad_w > 0:

            image = cv2.copyMakeBorder(image,
                                       top=pad_h_half,
                                       left=pad_w_half,
                                       bottom=pad_h - pad_h_half,
                                       right=pad_w - pad_w_half,
                                       borderType=cv2.BORDER_CONSTANT,
                                       value=self.mean_val)
            if label is not None:
                label = cv2.copyMakeBorder(label,
                                           top=pad_h_half,
                                           left=pad_w_half,
                                           bottom=pad_h - pad_h_half,
                                           right=pad_w - pad_w_half,
                                           borderType=cv2.BORDER_CONSTANT,
                                           value=self.ignore_label)
        return image, label


# TODO,中心裁剪
class CenterCrop(object):
    def __init__(self, crop_size):
        self.crop_h = crop_size
        self.crop_w = crop_size
    def __call__(self, image, label=None):
        h, w, c = image.shape
        top = (h - self.crop_h) // 2
        left = (w - self.crop_w) // 2
        image = image[top:top+self.crop_h, left:left+self.crop_w, :]
        if label is not None:
            label = label[top:top+self.crop_h, left:left+self.crop_w]
        return image, label
            

# TODO, 调整大小, 每个方法都是处理后,返回图像与标签
class Resize(object):
    def __init__(self, size):
        self.size = size
    def __call__(self, image, label=None):
        image = cv2.resize(image, (self.size, self.size), interpolation=cv2.INTER_LINEAR)
        if label is not None:
            label = cv2.resize(label, (self.size, self.size), interpolation=cv2.INTER_NEAREST)
        return image, label

# TODO,随机翻转
class RandomFlip(object):
    def __call__(self, image, label=None):
        prob_of_flip = np.random.rand()
        if prob_of_flip > 0.5:
            image = cv2.flip(image, 1)
            if label is not None:
                label = cv2.flip(label, 1)
        return image, label

# TODO,随机剪切,与CenterCrop的原理一样,
class RandomCrop(object):
    def __init__(self, crop_size):
        self.crop_size = crop_size
    def __call__(self, image, label=None):
        h, w, c = image.shape
        top = np.random.uniform(h - self.crop_size)
        left = np.random.uniform(w - self.crop_size)

        assert top >= 0, "Error: crop_size > image height!"
        assert left >= 0, "Error: crop_size > image width!"

        rect = np.array([int(left),
                        int(top),
                        int(left + self.crop_size),
                        int(top + self.crop_size)])

        image = image[rect[1]: rect[3], rect[0]:rect[2], :]
        if label is not None:
            label = label[rect[1]: rect[3], rect[0]:rect[2]]
        return image, label

# TODO,缩放
class Scale(object):
    def __call__(self, image, label=None, scale=1.0):
        if not isinstance(scale, (list, tuple)):
            scale = [scale, scale]
        h, w, c = image.shape
        image = cv2.resize(image,
                        (int(w*scale[0]), int(h*scale[1])),
                        interpolation=cv2.INTER_LINEAR)
        if label is not None:
            label = cv2.resize(label,
                        (int(w*scale[0]), int(h*scale[1])),
                        interpolation=cv2.INTER_LINEAR)
        return image, label


# TODO,随机缩放
class RandomScale(object):
    def __init__(self, min_scale=0.5, max_scale=2.0, step=0.25):
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.step = step
        self.scale = Scale()

    def __call__(self, image, label=None):
        if self.step == 0:
            self.random_scale = np.random.uniform(self.min_scale, self.max_scale, 1)[0]
        else:
            num_steps = int((self.max_scale - self.min_scale) / self.step + 1)
            scale_factors = np.linspace(self.min_scale, self.max_scale, num_steps)
            np.random.shuffle(scale_factors)
            self.random_scale = scale_factors[0]

        image, label = self.scale(image, label, self.random_scale)
        return image, label


def main():
    image = cv2.imread('./work/dummy_data/JPEGImages/2008_000064.jpg')
    label = cv2.imread('./work/dummy_data/GroundTruth_trainval_png/2008_000064.png')

    # TODO: crop_size
    crop_size = 256
    # augment = Compose([
    #         RandomScale(),
    #         RandomFlip(),
    #         Pad(crop_size, mean_val=[0.485, 0.456, 0.406]),
    #         RandomCrop(crop_size),
    #         ConvertDataType(),
    #         Normalize(0, 1)])

    # new_img, _ = augment(image)
    # cv2.imwrite('tmp_new.png', new_img)
    # TODO: Transform: RandomSacle, RandomFlip, Pad, RandomCrop
    randScale = RandomScale()
    randscale_img, _ = randScale(image)
    cv2.imwrite('randScale.png', randscale_img)
    
    scale = Scale()
    scale_img, _ = scale(image, label, 0.5)
    cv2.imwrite('scale_img.png', scale_img)

    randFlip = RandomFlip()
    randflip_img, _ = randFlip(image, label)
    cv2.imwrite('randflip.png', randflip_img)

    pad = Pad(crop_size, mean_val=[0.485, 0.456, 0.406])
    pad_img, _ = pad(image, label)
    cv2.imwrite('pad.png', pad_img)

    randCrop = RandomCrop(crop_size)
    randcrop_img, _ = randCrop(image, label)
    cv2.imwrite('randcrop.png', randcrop_img)

    for i in range(10):
        # TODO: call transform
        randcrop_img, _ = randCrop(image, label)
        # TODO: save image
        filename = 'randcrop_img'+str(i)+'.png'
        cv2.imwrite(filename, randcrop_img)

if __name__ == "__main__":
    main()

 

在 aistudio 的 notebook 中执行这几个程序,默认是不执行的,要带有路径或切换路径才可以。

带有路径的执行方法如下, 在 notebook 中添加一个 code 区域,在区域中添加如下:

!python work/basic_model.py

切换路径的运行方法如下:

%cd work

!python basic_model.py

!python basic_dataloader.py

!python basic_transform.py

程序做的还不完整,但是跟着老师写代码,学会了一些基本的操作和思路,后面还要继续学习与练习。

1
收藏
回复
全部评论(5)
时间顺序
AIStudio810259
#2 回复于2020-10

手撸代码

越看越有味,要多看几遍,一遍搞不定。。。

0
回复
AIStudio810260
#3 回复于2020-10

手写真的有收获,终于知道某些报错为什么会发生了……

0
回复
thinc
#4 回复于2020-10

写代码比看代码爽多了

0
回复
AIStudio810258
#5 回复于2020-10

公开项目啊,大佬~~

0
回复
thinc
#6 回复于2020-10
公开项目啊,大佬~~

蹲一个

0
回复
在@后输入用户全名并按空格结束,可艾特全站任一用户