用神经网络训练速度变慢
收藏
在简单的三层神经网络训练中发现训练速度越来越慢,开始很快,后面血慢,请问这是什么问题?
def reader_creator(train_data): def reader(): for d in train_data: yield d[:-1], d[-1:] return reader print(reader_creator(train_data=f_data)) train_reader = fluid.io.batch( fluid.io.shuffle( reader_creator(f_data), buf_size=500), batch_size=BATCH_SIZE) #print(train_reader) test_reader = fluid.io.batch( fluid.io.shuffle( reader_creator(f_test_data), buf_size=500), batch_size=BATCH_SIZE) Rs_Ra_T_H = fluid.data(name='x', shape=[None, 3], dtype='float32') # 定义输入的形状和数据类型 C = fluid.data(name='y', shape=[None, 1], dtype='float32') # 定义输出的形状和数据类型 hidden1 = fluid.layers.fc(input=Rs_Ra_T_H, size=3, act='softmax') # 连接输入和输出的全连接层 hidden2 = fluid.layers.fc(input=hidden1,size=7,act='tanh') prediction=fluid.layers.fc(input=hidden2,size=1) cost = fluid.layers.square_error_cost(input=prediction, label=C) # 利用标签数据和输出的预测数据估计方差 avg_loss = fluid.layers.mean(cost) # 对方差求均值,得到平均损失 FLAGS_eager_delete_tensor_gb=0.0 main_program = fluid.default_main_program() # 获取默认/全局主函数 startup_program = fluid.default_startup_program() # 获取默认/全局启动程序 #克隆main_program得到test_program #有些operator在训练和测试之间的操作是不同的,例如batch_norm,使用参数for_test来区分该程序是用来训练还是用来测试 #该api不会删除任何操作符,请在backward和optimization之前使用 test_program = main_program.clone(for_test=True) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_loss) use_cuda = True place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() # 指明executor的执行场所 ###executor可以接受传入的program,并根据feed map(输入映射表)和fetch list(结果获取表)向program中添加数据输入算子和结果获取算子。使用close()关闭该executor,调用run(...)执行program。 exe = fluid.Executor(place) num_epochs = 100 def train_test(executor, program, reader, feeder, fetch_list): accumulated =[0] count = 0 for data_test in reader(): outs = executor.run(program=program, feed=feeder.feed(data_test), fetch_list=fetch_list) accumulated = [x_c[0] + x_c[1][0] for x_c in zip(accumulated, outs)] # 累加测试过程中的损失值 count += 1 # 累加测试集中的样本数量 return [x_d / count for x_d in accumulated] # 计算平均损失 params_dirname = "Ann.inference.model" feeder = fluid.DataFeeder(place=place, feed_list=[Rs_Ra_T_H, C]) exe.run(startup_program) train_prompt = "train cost" test_prompt = "test cost" from paddle.utils.plot import Ploter plot_prompt = Ploter(train_prompt, test_prompt) step = 0 exe_test = fluid.Executor(place) for pass_id in range(num_epochs): print("pass_id="+str(pass_id)) for data_train in train_reader(): avg_loss_value, = exe.run(main_program, feed=feeder.feed(data_train), fetch_list=[avg_loss]) if step % 10 == 0: # 每10个批次记录并输出一下训练损失 plot_prompt.append(train_prompt, step, avg_loss_value[0]) plot_prompt.plot() print("%s, Step %d, Cost %f" % (train_prompt, step, avg_loss_value[0])) if step % 100 == 0: # 每100批次记录并输出一下测试损失 test_metics = train_test(executor=exe_test, program=test_program, reader=test_reader, fetch_list=[avg_loss], feeder=feeder) plot_prompt.append(test_prompt, step, test_metics[0]) plot_prompt.plot() print("%s, Step %d, Cost %f" % (test_prompt, step, test_metics[0])) if test_metics[0] < 0.01: # 如果准确率达到要求,则停止训练 break step += 1 if math.isnan(float(avg_loss_value[0])): sys.exit("got NaN loss, training failed.") #保存训练参数到之前给定的路径中 if params_dirname is not None: fluid.io.save_inference_model(params_dirname, ['x'], [prediction], exe)
1
收藏
请登录后评论
做的是什么任务呀?图像分类?简单描述下?
你这代码有点看不懂啊,softmax之后又做了个全连接是什么意思
我也遇到了这个问题,请问你解决了吗
是代码运行慢还是收敛慢?