在ubuntu下再次运行CNN图像分类的问题
收藏
在ubuntu下运行教程中的CNN图片分类程序,打印出了这个消息:
Process finished with exit code 137 (interrupted by signal 9: SIGKILL)
然后过一会程序就停止了
背景是我先运行了一遍,在[===================================]结束之后,报错我没有装IPython
然后我安装了最新的IPython,再运行,就报了这个错误。
ubuntu版本:18.04.2 虚拟机版本:VM14 paddpaddle版本:paddlepaddle.fluid.1.3(cpu) IPython7.3.0 python版本:3.6
代码如下:
import paddle
import paddle.fluid as fluid
import numpy
import sys
# from __future__ import print_function
# 定义训练的过程
def vgg_bn_drop(input):
def conv_block(ipt, num_filter, groups, dropouts):
return fluid.nets.img_conv_group(
input=ipt,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max')
conv1 = conv_block(input, 64, 2, [0.3, 0])
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
bn = fluid.layers.batch_norm(input=fc1, act='relu')
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
predict = fluid.layers.fc(input=fc2, size=10, act='softmax')
return predict
# 定义训练网络
def inference_program():
# The image is 32 * 32 with RGB representation.
data_shape = [3, 32, 32]
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
# predict = resnet_cifar10(images, 32)
predict = vgg_bn_drop(images) # un-comment to use vgg net
return predict
# 定义均方差和精度
def train_program(predict = inference_program()):
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=predict, label=label)
return [avg_cost, accuracy]
# 定义优化器
def optimizer_program():
return fluid.optimizer.Adam(learning_rate=0.001)
# 定义训练和测试样本
BATCH_SIZE = 128
# Reader for training
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.cifar.train10(), buf_size=50000),
batch_size=BATCH_SIZE)
# Reader for testing. A separated data set for testing.
test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
# 运行各种函数,将优化器,训练网络实体化
feed_order = ['pixel', 'label']
main_program = fluid.default_main_program()
star_program = fluid.default_startup_program()
# Test program
test_program = main_program.clone(for_test=True)
predict = inference_program()
avg_cost, acc = train_program(predict)
optimizer = optimizer_program()
optimizer.minimize(avg_cost)
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
EPOCH_NUM = 2
# For training test cost
def train_test(program, reader):
count = 0
feed_var_list = [
program.global_block().var(var_name) for var_name in feed_order
]
feeder_test = fluid.DataFeeder(
feed_list=feed_var_list, place=place)
test_exe = fluid.Executor(place)
accumulated = len([avg_cost, acc]) * [0]
for tid, test_data in enumerate(reader()):
avg_cost_np = test_exe.run(program=program,
feed=feeder_test.feed(test_data),
fetch_list=[avg_cost, acc])
accumulated = [x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)]
count += 1
return [x / count for x in accumulated]
params_dirname = "image_classification_resnet.inference.model"
from paddle.utils.plot import Ploter
train_prompt = "Train cost"
test_prompt = "Test cost"
plot_cost = Ploter(test_prompt,train_prompt)
# main train loop.
def train_loop():
feed_var_list_loop = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(
feed_list=feed_var_list_loop, place=place)
exe.run(star_program)
step = 0
for pass_id in range(EPOCH_NUM):
for step_id, data_train in enumerate(train_reader()):
avg_loss_value = exe.run(main_program,
feed=feeder.feed(data_train),
fetch_list=[avg_cost, acc])
if step % 1 == 0:
plot_cost.append(train_prompt, step, avg_loss_value[0])
plot_cost.plot()
step += 1
avg_cost_test, accuracy_test = train_test(test_program,
reader=test_reader)
plot_cost.append(test_prompt, step, avg_cost_test)
# save parameters
if params_dirname is not None:
fluid.io.save_inference_model(params_dirname, ["pixel"],
[predict], exe)
if __name__ == '__main__':
train_loop()
0
收藏
请登录后评论
你电脑支持AVX指令集吗?
支持的