萌新,求助
收藏
想做的医学图像灰度图的分割,训练模型的时候出现,.epoch不会增加(我看其他一些博主的代码里都有增加的)?
无论iters取100还是1000结果都一样 ———— Images: 1328 mIoU: 0.5000 Acc: 1.0000 Kappa: nan Dice: 0.5000?
附图:config/yaml文件,和运行记录
batch_size: 4
iters: 100
train_dataset:
type: Dataset
dataset_root: /home/xyf/MZA/some_model/png
train_path: /home/xyf/MZA/some_model/txt/new/train_list.txt
num_classes: 2
mode: train
transforms:
# - type: ResizeStepScaling
# min_scale_factor: 0.5
# max_scale_factor: 2.0
# scale_step_size: 0.25
# - type: RandomPaddingCrop
# crop_size: [512, 512]
- type: RandomHorizontalFlip
# - type: RandomDistort
# brightness_range: 0.5
# contrast_range: 0.5
# saturation_range: 0.5
- type: Normalize
val_dataset:
type: Dataset
dataset_root: /home/xyf/MZA/some_model/png
val_path: /home/xyf/MZA/some_model/txt/new/val_list.txt
num_classes: 2
mode: val
transforms:
- type: Normalize
optimizer:
type: SGD
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.001
end_lr: 0
power: 0.9
loss:
types:
- type: CrossEntropyLoss
coef: [1]
model:
type: UNet
num_classes: 2
2.
------------Environment Information-------------
platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.10
Python: 3.8.16 | packaged by conda-forge | (default, Feb 1 2023, 16:01:55) [GCC 11.3.0]
Paddle compiled with cuda: True
NVCC: Not Available
cudnn: 8.2
GPUs used: 1
CUDA_VISIBLE_DEVICES: None
GPU: ['GPU 0: NVIDIA GeForce']
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
PaddleSeg: 2.8.0
PaddlePaddle: 2.4.2
OpenCV: 4.5.5
------------------------------------------------
2023-06-07 15:57:01 [INFO]
---------------Config Information---------------
batch_size: 4
iters: 100
train_dataset:
dataset_root: /home/xyf/MZA/some_model/png
mode: train
num_classes: 2
train_path: /home/xyf/MZA/some_model/txt/new/train_list.txt
transforms:
- type: RandomHorizontalFlip
- type: Normalize
type: Dataset
val_dataset:
dataset_root: /home/xyf/MZA/some_model/png
mode: val
num_classes: 2
transforms:
- type: Normalize
type: Dataset
val_path: /home/xyf/MZA/some_model/txt/new/val_list.txt
optimizer:
momentum: 0.9
type: SGD
weight_decay: 4.0e-05
lr_scheduler:
end_lr: 0
learning_rate: 0.001
power: 0.9
type: PolynomialDecay
loss:
coef:
- 1
types:
- type: CrossEntropyLoss
model:
num_classes: 2
type: UNet
------------------------------------------------
2023-06-07 15:57:01 [INFO] Set device: gpu
2023-06-07 15:57:01 [INFO] Use the following config to build model
model:
num_classes: 2
type: UNet
W0607 15:57:01.504024 348892 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.6, Driver API Version: 11.3, Runtime API Version: 11.2
W0607 15:57:01.504060 348892 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.
2023-06-07 15:57:02 [INFO] Use the following config to build train_dataset
train_dataset:
dataset_root: /home/xyf/MZA/some_model/png
mode: train
num_classes: 2
train_path: /home/xyf/MZA/some_model/txt/new/train_list.txt
transforms:
- type: RandomHorizontalFlip
- type: Normalize
type: Dataset
2023-06-07 15:57:02 [INFO] Use the following config to build val_dataset
val_dataset:
dataset_root: /home/xyf/MZA/some_model/png
mode: val
num_classes: 2
transforms:
- type: Normalize
type: Dataset
val_path: /home/xyf/MZA/some_model/txt/new/val_list.txt
2023-06-07 15:57:02 [INFO] If the type is SGD and momentum in optimizer config, the type is changed to Momentum.
2023-06-07 15:57:02 [INFO] Use the following config to build optimizer
optimizer:
momentum: 0.9
type: Momentum
weight_decay: 4.0e-05
2023-06-07 15:57:02 [INFO] Use the following config to build loss
loss:
coef:
- 1
types:
- type: CrossEntropyLoss
/home/xyf/.conda/envs/paddle/lib/python3.8/site-packages/paddle/nn/layer/norm.py:712: UserWarning: When training, we now always track global mean and variance.
warnings.warn(
/home/xyf/.conda/envs/paddle/lib/python3.8/site-packages/paddle/fluid/dygraph/math_op_patch.py:275: UserWarning: The dtype of left and right variables are not the same, left dtype is paddle.float32, but right dtype is paddle.int64, the right dtype will convert to paddle.float32
warnings.warn(
2023-06-07 15:57:07 [INFO] [TRAIN] epoch: 1, iter: 10/100, loss: 0.5832, lr: 0.000919, batch_cost: 0.4442, reader_cost: 0.01087, ips: 9.0046 samples/sec | ETA 00:00:39
2023-06-07 15:57:09 [INFO] [TRAIN] epoch: 1, iter: 20/100, loss: 0.0688, lr: 0.000827, batch_cost: 0.2084, reader_cost: 0.02542, ips: 19.1934 samples/sec | ETA 00:00:16
2023-06-07 15:57:11 [INFO] [TRAIN] epoch: 1, iter: 30/100, loss: 0.0184, lr: 0.000735, batch_cost: 0.2071, reader_cost: 0.02405, ips: 19.3181 samples/sec | ETA 00:00:14
2023-06-07 15:57:13 [INFO] [TRAIN] epoch: 1, iter: 40/100, loss: 0.0098, lr: 0.000641, batch_cost: 0.2099, reader_cost: 0.02693, ips: 19.0566 samples/sec | ETA 00:00:12
2023-06-07 15:57:15 [INFO] [TRAIN] epoch: 1, iter: 50/100, loss: 0.0077, lr: 0.000546, batch_cost: 0.2092, reader_cost: 0.02568, ips: 19.1181 samples/sec | ETA 00:00:10
2023-06-07 15:57:15 [INFO] Start evaluating (total_samples: 1328, total_iters: 1328)...
1328/1328 [==============================] - 23s 17ms/step - batch_cost: 0.0169 - reader cost: 9.7707e-05
2023-06-07 15:57:38 [INFO] [EVAL] #Images: 1328 mIoU: 0.5000 Acc: 1.0000 Kappa: 0.0000 Dice: 0.5000
2023-06-07 15:57:38 [INFO] [EVAL] Class IoU:
[1. 0.]
2023-06-07 15:57:38 [INFO] [EVAL] Class Precision:
[1. 0.]
2023-06-07 15:57:38 [INFO] [EVAL] Class Recall:
[1. 0.]
2023-06-07 15:57:38 [INFO] [EVAL] The model with the best validation mIoU (0.5000) was saved at iter 50.
0
收藏
请登录后评论
数据集大小是多少,你可以算出来需要多少个iters是一个epoch
你好请问解决了吗我也遇到了同样问题