
---license: Apache License 2.0 language:- Chinese- English tasks:- ERNIE Large Models- Multimodal Models model_features:- 128k Context training_framework: ERNIEKit inference_framework: FastDeploy---<div align="center" style="line-height: 1;"> <a href="https://ernie.baidu.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖_Chat-ERNIE_Bot-blue" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/baidu" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-ERNIE-000?logo=github&color=0000FF" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;"> <img alt="Blog" src="https://img.shields.io/badge/🖖_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://discord.gg/JPmZXDsEEK" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-ERNIE-5865F2?logo=discord&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;"> <img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://x.com/ErnieforDevs" target="_blank" style="margin: 2px;"> <img alt="X" src="https://img.shields.io/badge/X-ErnieforDevs-A080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a></div><div align="center" style="line-height: 1;"> <a href="#license" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-Apache2.0-A5de54" style="display: inline-block; vertical-align: middle;"/> </a></div># 🚀 **Introducing ERNIE-4.5-VL-28B-A3B-Thinking: A Breakthrough in Multimodal AI**## Model HighlightsBuilt upon the powerful ERNIE-4.5-VL-28B-A3B architecture, the newly upgraded **ERNIE-4.5-VL-28B-A3B-Thinking** achieves a remarkable leap forward in multimodal reasoning capabilities. 🧠✨ Through an extensive mid-training phase, the model absorbed a vast and highly diverse corpus of premium visual-language reasoning data. This massive-scale training process dramatically boosted the model's representation power while deepening the semantic alignment between visual and language modalities—unlocking unprecedented capabilities in nuanced visual-textual reasoning. 📊The model leverages cutting-edge multimodal reinforcement learning techniques on verifiable tasks, integrating GSPO and IcePop strategies to stabilize MoE training combined with dynamic difficulty sampling for exceptional learning efficiency. ⚡ Responding to strong community demand, we've significantly strengthened the model's grounding performance with improved instruction-following capabilities, making visual grounding functions more accessible than ever. 🎯 Additionally, our innovative "Thinking with Images" feature, when paired with tools like image zooming and image search, dramatically elevates the model's ability to process fine-grained details and handle long-tail visual knowledge. 🔍🖼️Together, these enhancements form a critical foundation for developing sophisticated multimodal agents, empowering developers and researchers to create next-generation AI applications that push the boundaries of what's possible in visual-language understanding. 🤖🌟## Key CapabilitiesAs a lightweight model that activates only **3B parameters** ⚡, **ERNIE-4.5-VL-28B-A3B-Thinking** closely matches the performance of the industry's top flagship models across various benchmarks. 🚀- **Visual Reasoning** 🧠👁️: Bolstered by large-scale reinforcement learning, the model demonstrates exceptional multi-step reasoning, chart analysis, and causal reasoning capabilities in complex visual tasks! 📊✨- **STEM Reasoning** 🔬📐: Leveraging its powerful visual abilities, the model achieves a leap in performance on STEM tasks like solving problems from photos, easily handling even complex questions! 🎯💡- **Visual Grounding** 📍🎨: Features more precise grounding and flexible instruction execution, easily triggering grounding functions in complex industrial scenarios for a significant efficiency boost! ⚙️💪- **Thinking with Images** 🤔🔍: The model thinks like a human, capable of freely zooming in and out of images to grasp every detail and uncover all information. 🖼️✨- **Tool Utilization** 🛠️⚡: Empowered by robust tool-calling capabilities, the model can instantly use functions like image search to easily identify long-tail knowledge and achieve comprehensive information retrieval! 🔎📚- **Video Understanding** 🎬🎥: The model possesses outstanding temporal awareness and event localization abilities, accurately identifying content changes across different time segments in a video, making video analysis smarter and more efficient! ⏱️🌟## Quickstart### Using `transformers` LibraryHere is an example of how to use the `transformers` library for inference:```pythonimport torchfrom transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLMmodel_path = 'baidu/ERNIE-4.5-VL-28B-A3B-Thinking'model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", dtype=torch.bfloat16, trust_remote_code=True)processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)model.add_image_preprocess(processor)messages = [ { "role": "user", "content": [ { "type": "text", "text": "What color clothes is the girl in the picture wearing?" }, { "type": "image_url", "image_url": { "url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example1.jpg" } }, ] },]text = processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True,)image_inputs, video_inputs = processor.process_vision_info(messages)inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt",)device = next(model.parameters()).deviceinputs = inputs.to(device)generated_ids = model.generate( inputs=inputs['input_ids'].to(device), **inputs, max_new_tokens=1024, use_cache=False )output_text = processor.decode(generated_ids[0][len(inputs['input_ids'][0]):])print(output_text)```### vLLM InferenceInstall the vLLM main branch```bashpip install uvuv pip install -U vllm --pre \ --extra-index-url https://wheels.vllm.ai/nightly \ --extra-index-url https://download.pytorch.org/whl/cu129 \ --index-strategy unsafe-best-match```Run vLLM```bash# 80G*1 GPU,If an error occurs, add the --gpu-memory-utilization 0.95 and try againvllm serve baidu/ERNIE-4.5-VL-28B-A3B-Thinking --trust-remote-code```Run vLLM using `reasoning-parser` and `tool-call-parser````bash# 80G*1 GPU,If an error occurs, add the --gpu-memory-utilization 0.95 and try againvllm serve baidu/ERNIE-4.5-VL-28B-A3B-Thinking --trust-remote-code \ --reasoning-parser ernie45 \ --tool-call-parser ernie45 \ --enable-auto-tool-choice```### FastDeploy InferenceQuickly deploy services using FastDeploy as shown below. For more detailed usage, refer to the [FastDeploy GitHub Repository](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/get_started/ernie-4.5-vl-thinking.md).**Note:** For single-card deployment, at least 80GB of GPU memory is required.```bashfastdeploy serve --model baidu/ERNIE-4.5-VL-28B-A3B-Thinking \ --max-model-len 131072 \ --max-num-seqs 32 \ --port 8180 \ --quantization wint8 \ --reasoning-parser ernie-45-vl-thinking \ --tool-call-parser ernie-45-vl-thinking \ --mm-processor-kwargs '{"image_max_pixels": 12845056 }'```### Finetuning with ERNIEKit[ERNIEKit](https://github.com/PaddlePaddle/ERNIE) is a training toolkit based on PaddlePaddle, specifically designed for the ERNIE series of open-source large models. It provides comprehensive support for scenarios such as instruction fine-tuning (SFT, LoRA) and alignment training (DPO), ensuring optimal performance.Usage Examples:```bash# Download modelhuggingface-cli download baidu/ERNIE-4.5-VL-28B-A3B-Thinking --local-dir baidu/ERNIE-4.5-VL-28B-A3B-Thinking# SFTerniekit train examples/configs/ERNIE-4.5-VL-28B-A3B-Thinking/sft/run_sft_lora_8k.yaml# SFT (Function Call)erniekit train examples/configs/ERNIE-4.5-VL-28B-A3B-Thinking/sft_function_call/run_sft_8k.yaml```For more detailed examples, including SFT with LoRA, multi-GPU configurations, and advanced scripts, please refer to the examples folder within the [ERNIEKit](https://github.com/PaddlePaddle/ERNIE) repository.## LicenseThe ERNIE 4.5 models are provided under the Apache License 2.0. This license permits commercial use, subject to its terms and conditions. Copyright (c) 2025 Baidu, Inc. All Rights Reserved.## CitationIf you find ERNIE 4.5 useful or wish to use it in your projects, please kindly cite our technical report:```text@misc{ernie2025technicalreport, title={ERNIE 4.5 Technical Report}, author={Baidu-ERNIE-Team}, year={2025}, primaryClass={cs.CL}, howpublished={\url{https://ernie.baidu.com/blog/publication/ERNIE_Technical_Report.pdf}}}```