
---license: Apache License 2.0hf_language: - en - zhpipeline_tag: text-generationtags: - ERNIE4.5library_name: transformerstasks: - ERNIE Large Models - Large Language Models - Large Reasoning Modelstraining_framework: PaddlePaddle---<div align="center" style="line-height: 1;"> <a href="https://ernie.baidu.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖_Chat-ERNIE_Bot-blue" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/baidu" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;"> <img alt="Github" src="https://img.shields.io/badge/GitHub-ERNIE-000?logo=github&color=0000FF" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;"> <img alt="Blog" src="https://img.shields.io/badge/🖖_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://discord.gg/JPmZXDsEEK" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-ERNIE-5865F2?logo=discord&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;"> <img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a></div><div align="center" style="line-height: 1;"> <a href="#license" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-Apache2.0-A5de54" style="display: inline-block; vertical-align: middle;"/> </a></div># ERNIE-4.5-21B-A3B-Thinking## Model HighlightsOver the past three months, we have continued to scale the **thinking capability** of ERNIE-4.5-21B-A3B, improving both the **quality and depth** of reasoning, thereby advancing the competitiveness of ERNIE **lightweight models** in complex reasoning tasks. We are pleased to introduce **ERNIE-4.5-21B-A3B-Thinking**, featuring the following key enhancements:* **Significantly improved performance** on reasoning tasks, including logical reasoning, mathematics, science, coding, text generation, and academic benchmarks that typically require human expertise.* **Efficient tool usage** capabilities.* **Enhanced 128K long-context understanding** capabilities.> [!NOTE]> Note: This version has an increased thinking length. We strongly recommend its use in highly complex reasoning tasks.## Model OverviewERNIE-4.5-21B-A3B-Thinking is a text MoE post-trained model, with 21B total parameters and 3B activated parameters for each token. The following are the model configuration details:|Key|Value||-|-||Modality|Text||Training Stage|Posttraining||Params(Total / Activated)|21B / 3B||Layers|28||Heads(Q/KV)|20 / 4||Text Experts(Total / Activated)|64 / 6||Shared Experts|2||Context Length|131072|## Quickstart> [!NOTE]> To align with the wider community, this model releases Transformer-style weights. Both PyTorch and PaddlePaddle ecosystem tools, such as vLLM, transformers, and FastDeploy, are expected to be able to load and run this model.### FastDeploy InferenceQuickly deploy services using FastDeploy as shown below. For more detailed usage, refer to the [FastDeploy GitHub Repository](https://github.com/PaddlePaddle/FastDeploy).**Note**: 80GB x 1 GPU resources are required. Deploying this model requires FastDeploy version 2.2.```bashpython -m fastdeploy.entrypoints.openai.api_server \ --model baidu/ERNIE-4.5-21B-A3B-Thinking \ --port 8180 \ --metrics-port 8181 \ --engine-worker-queue-port 8182 \ --load-choices "default_v1" \ --tensor-parallel-size 1 \ --max-model-len 131072 \ --reasoning-parser ernie_x1 \ --tool-call-parser ernie_x1 \ --max-num-seqs 32```The ERNIE-4.5-21B-A3B-Thinking model supports function call.```bashcurl -X POST "http://0.0.0.0:8180/v1/chat/completions" \-H "Content-Type: application/json" \-d $'{ "messages": [ { "role": "user", "content": "How \'s the weather in Beijing today?" } ], "tools": [ { "type": "function", "function": { "name": "get_weather", "description": "Determine weather in my location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": [ "c", "f" ] } }, "additionalProperties": false, "required": [ "location", "unit" ] }, "strict": true } }]}'```### vLLM inferenceVLLM>=0.10.2 (excluding 0.11.0)```bashvllm serve baidu/ERNIE-4.5-21B-A3B-Thinking```The `reasoning-parser` and `tool-call-parser` for vLLM Ernie need install vllm main branch### Using `transformers` library**Note**: You'll need the`transformers`library (version 4.54.0 or newer) installed to use this model.The following contains a code snippet illustrating how to use the model generate content based on given inputs.```pythonimport torchfrom transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "baidu/ERNIE-4.5-21B-A3B-Thinking"# load the tokenizer and the modeltokenizer = AutoTokenizer.from_pretrained(model_name)model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16,)# prepare the model inputprompt = "Give me a short introduction to large language model."messages = [ {"role": "user", "content": prompt}]text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True)model_inputs = tokenizer([text], add_special_tokens=False, return_tensors="pt").to(model.device)# conduct text completiongenerated_ids = model.generate( **model_inputs, max_new_tokens=1024)output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()# decode the generated idsgenerate_text = tokenizer.decode(output_ids, skip_special_tokens=True)print("generate_text:", generate_text)```## LicenseThe ERNIE 4.5 models are provided under the Apache License 2.0. This license permits commercial use, subject to its terms and conditions. Copyright (c) 2025 Baidu, Inc. All Rights Reserved.## CitationIf you find ERNIE 4.5 useful or wish to use it in your projects, please kindly cite our technical report:```text@misc{ernie2025technicalreport, title={ERNIE 4.5 Technical Report}, author={Baidu-ERNIE-Team}, year={2025}, primaryClass={cs.CL}, howpublished={\url{https://ernie.baidu.com/blog/publication/ERNIE_Technical_Report.pdf}}}```