1、监督学习(SupervisedLearning):有类别标签的学习,基于训练样本的输入、输出训练得到最优模型,再使用该模型预测新输入的输出;
代表算法:决策树、朴素贝叶斯、逻辑回归、KNN、SVM、神经网络、随机森林、AdaBoost、遗传算法;
2、半监督学习(Semi-supervisedLearning):同时使用大量的未标记数据和标记数据,进行模式识别工作;
代表算法:self-training(自训练算法)、generative models生成模型、SVMs半监督支持向量机、graph-basedmethods图论方法、 multiviewlearing多视角算法等;
3、无监督学习(UnsupervisedLearning):无类别标签的学习,只给定样本的输入,自动从中寻找潜在的类别规则;
代表算法:主成分分析方法PCA等,等距映射方法、局部线性嵌入方法、拉普拉斯特征映射方法、黑塞局部线性嵌入方法、局部切空间排列方法等;
4、HOG特征:全称Histogram of Oriented Gradient(方向梯度直方图),由图像的局部区域梯度方向直方图构成特征;
5、LBP特征:全称Local Binary Pattern(局部二值模式),通过比较中心与邻域像素灰度值构成图像局部纹理特征;
6、Haar特征:描述图像的灰度变化,由各模块的像素差值构成特征;
7、核函数(Kernels):从低维空间到高维空间的映射,把低维空间中线性不可分的两类点变成线性可分的;
8、SVM:全称Support Vector Machine(支持向量机),在特征空间上找到最佳的超平面使训练集正负样本的间隔最大;是解决二分类问题的有监督学习算法,引入核方法后也可用来解决非线性问题;
9、Adaboost:全称Adaptive Boosting(自适应增强),对同一个训练集训练不同的弱分类器,把这些弱分类器集合起来,构成一个更强的强分类器;
10、决策树算法(Decision Tree):处理训练数据,构建决策树模型,再对新数据进行分类;
11、随机森林算法(Random Forest):使用基本单元(决策树),通过集成学习将多棵树集成;
12、朴素贝叶斯(Naive Bayes):根据事件的先验知识描述事件的概率,对联合概率建模来获得目标概率值;
13、神经网络(Neural Networks):模仿动物神经网络行为特征,将许多个单一“神经元”联结在一起,通过调整内部大量节点之间相互连接的关系,进行分布式并行信息处理。
转自csdn
在这里发个消息,方便忘了再来看
随机森林上课倒是听说过
第十二条有些难懂
无监督学习原来是酱吖
知识点get 啦
这种基础概念的确需要了解
嗯,这些小知识还是要了解一下的。